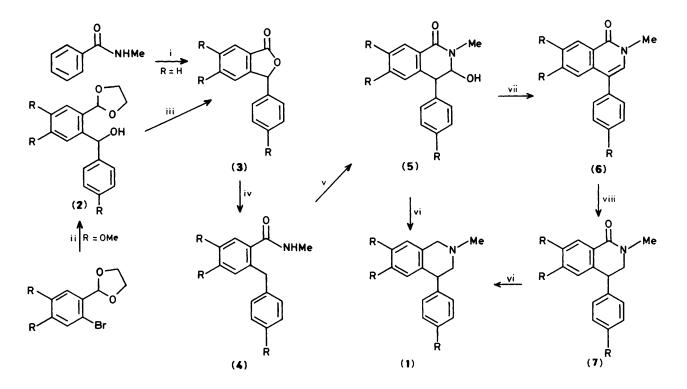
191

An Efficient Synthesis of 4-Aryl-1,2,3,4-tetrahydroisoquinolines

Nurani S. Narasimhan* and Prakash A. Patil

Garware Research Centre, Department of Chemistry, University of Poona, Pune 411 007, India

A general synthesis of N-methyl-1,2,3,4-tetrahydroisoquinolines from 3-aryl phthalides is described.


In this communication we describe a general synthesis of N-methyl-4-aryl-1,2,3,4-tetrahydroisoquinolines. Our synthesis is illustrated for N-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (1a), which is an agonist for the dopamine receptor¹ and the methyl ether of cherylline (1b), a rare phenolic

isoquinoline alkaloid² with an aryl substituent at the 4 position.

The starting compounds are the 3-aryl phthalides (3), which are obtained as shown.³ On hydrogenolysis, the phthalides provided the *ortho*-benzyl benzoic acids. The *N*-methyl

Table 1.

		(2)	(3)	(4)	(5)	(6)	(7)	(1)
a ; R = H	M.p./°C		114 (EtOH- C ₆ H ₁₄)	102-103 (C ₆ H ₁₄ - EtOAc)	135—136	181—182 (C ₆ H ₁₄ - EtOAc)	79—80	178—179 (HCl) (EtOH-Et ₂ O) Lit., ⁵ 178—179
	% Yield		70	75	80	9 0	75	50
b ; R = OMe	M.p./°C	106—108 (Et ₂ O)	128—129 (EtOH)	131-132 (C ₆ H ₁₄ - EtOAc)	123—126	179—180 (EtOAc)		227—228 (HCl) (MeOH-Et ₂ O) Lit., ⁶ 228—229
	% Yield	80	65	80	75	90		45

Scheme 1. i, BuⁿLi-diethyl ether, tetrahydrofuran (THF), heat; PhCHO, 0°C; 50% HCl; ii, BuⁿLi-diethyl ether, -78°C; ArCHO, -78°C; H₂O; iii, 1 M H₂SO₄, C₆H₆, room temp., 3 h; Na₂Cr₂O₇, room temp., 3 h; iv, H₂-Pd/C, 90 psi: for **a**, room temp., 18 h, for **b**, 80°C, 3 h; SOCl₂: for **a**, 10 min, room temp., for **b**, THF, 0°C, 1 h; aq. MeNH₂, 0°C; v, BuⁿLi-diethyl ether, 0°C; DMF, 0°C; H₂O; vi, LiAlH₄-THF, room temp., 2 h; vii, 1 M H₂SO₄, heat, 10 min; viii, H₂-Pd/C, 90 psi, 80°C, 3 h (only for **a**).

benzamides (4) of the acids, on lithiation with BuⁿLi followed by treatment with dimethylformamide (DMF), gave the *N*-methyl-3-hydroxy-1,2,3,4-tetrahydroisoquinolone (5), which on dehydration and reduction or direct reduction furnished the target compounds (Table 1).[†]

The synthesis described above is potentially very useful, since the 3-aryl phthalides, in which the aromatic ring may be unsubstituted or substituted at any position with methoxy groups, are readily available through aromatic lithiation reactions³ or through halogen-metal exchange reactions.⁴

We thank C.S.I.R., New Delhi, for a fellowship to P. A. P.

Received, 22nd July 1986; Com. 1034

References

- 1 P. A. Dandridge, C. Kaiser, M. Brenner, D. Gaitanopoulos, L. D. Davis, R. Lee Webb, J. J. Foley, and H. M. Sarau, J. Med. Chem., 1984, 27, 28.
- 2 H. Hara, R. Shirai, O. Hoshino, and B. Umezawa, *Heterocycles*, 1983, **20**, 1945 and references cited therein.
- 3 Phthalides with different methoxy substitution patterns can be synthesised through aromatic lithiation reactions: W. H. Puterbaugh and C. R. Hauser, J. Org. Chem., 1964, 29, 853; B. H. Bhide and N. S. Narasimhan, Tetrahedron, 1971, 27, 6171; D. W. Slocum and C. A. Jennings, J. Org. Chem., 1976, 41, 3653. For references to Professor V. Snieckus' work, see P. Beak and V. Snieckus, Acc. Chem. Res., 1982, 15, 306.
- 4 H. P. Plaumann, J. G. Smith, and R. Rodrigo, J. Chem. Soc., Chem. Commun., 1980, 354.
- 5 K. Freter, E. Dubois, and A. Thomas, J. Heterocycl. Chem., 1970, 7, 159.
- 6 A. Brossi, G. Grethe, and S. Teitel, J. Org. Chem., 1970, 35, 1100.

 $[\]dagger$ Satisfactory i.r., ${}^1\!H$ n.m.r., and analytical data were obtained for all new compounds.